

Transferable Explosive Formulations

S French, <u>P Bolton</u>, P Jenkins, L Webb, S Miller

peter.bolton@awe.co.uk AWE, Aldermaston, Reading. UK

IMEMTS 2010

Overview

- Background
- Aims
- Ingredient Properties
- Formulation
- Evaluation
- Conclusions
- Future Work

Background

- Transferable explosives must have/be:
 - Low viscosity to allow injection through small diameter channels.
 - Resistance to sedimentation post injection.
 - Homogeneous and without voids, particularly at the interfaces.
- Traditionally transferrable materials are manufactured using energetic liquid carriers
 - Migration, thermal stability, cost and availability are often issues.

Aims

- Produce a thermally stable paste explosive based on HMX capable of initiating an IHE charge
 - Determine optimal HMX loading for manufacture into small channels.
 - Determine critical diameter and velocity of detonation of chosen formulations.
 - Determine ability to initiate an IHE charge (TATB based).

Ingredients

- Filler
 - HMX Type B
- Binder
 - Liquid fluoropolymer
 - Fluorine content: ~ 62%
 - Density: 1.81 g.cm⁻³
 - Viscosity (20 °C): 85 cSt
 - Tg: -110 °C

Particle Distribution of HMX Type B

Diameter / µm

1

10

100

0.5 - 0 - 0.01

0.1

1000

Binder

- Fluoropolymer offers;
 - Improved stability
 - Low toxicity
 - 15hrs at 120°C
 - K10 100% wt loss
 - Fluoropolymer 26%

Isothermal TGA showing thermal stability at 120 °C

Formulation

- Three formulations were manufactured using an IKA HKV1 litre mixer.
 - No solvent.
 - No vacuum.
 - 45 minutes at 40°C.
- Pastes mixed at 230g scale

Formulation Properties

- A: 65 wt% HMX: Slurry does not retain dimensional stability.
- B: 70 wt% HMX: Paste like.
- **C**: 75 wt% HMX: Clumpy powder.

	HMX loading /				Temperature of
Composition	wt%	F of I	Mallet Friction	ESD	Ignition / °C
Α	65	149	0% All Surfaces	Ignitions at 4.5 J No ignitions at 0.45 J	273.1
В	70	145			275.1
С	75	133			274.2

Powder Hazard Test Results

Evaluation - Failure Diameter (Test 1)

- Formulations assembled into Perspex track plate and attached to aluminium witness plate.
- Initiated by RP-2 detonator.
- Provides initial estimation of critical diameter.
 - A did not initiate in this configuration

Schematic of witness plate

Formulation C Shot 1 Witness Plate

Evaluation - Failure Diameter (Test 2)

Test Configuration

- Columns of paste (donor; 10 mm) subjected to a detonation from a wider track of explosive (10 mm)
- Test plate contains columns of paste with varying diameter
- 5mm aluminium witness plate bolted to base of assembly
- Pizo probes were positioned to determine V of D.

Failure Diameter Test (2) Results

Witness plate for failure diameter test

Composition	V of D / km/s	Failure Diameter / mm
A	No result	No result
В	7.6 ± 1%	3.3
С	7.7 ± 1%	2.7 - 3

V of D and Failure Diameter Results

Evaluation - IHE Initiability Test

- Test Configuration
 - 30mm (length) x 15mm (diameter) cylinder of paste
 - Initiated by RP-2 detonator
 - 20mm (length) x 25mm (diameter) acceptor IHE pellet
 - 3 time of arrival probes allows estimation of detonation velocity

IHE Initiability Test Results

- A not tested.
- **B** and **C** successfully initiated IHE (95% TATB) to full detonation.
 - As observed by trigger of probe at the end of the acceptor.
 - Results indicate that these materials are not significantly different in their initiating properties.
- V of D can be estimated.
 - Based on assumption that IHE is promptly initiated to give constant velocity between the two probes.
 - Compares well with failure diameter and other tests.
 - Timings suggest **B** and **C** have similar initiating properties

	В	С			
Probe (1)	1.992	2.020			
Probe (2)	5.328	No data			
Probe (3)	8.216	8.252			
Time of arrival data					

Conclusions

- Three paste formulations (HMX and liquid fluoropolymer) have been manufactured and critical diameter, velocity of detonation and IHE initiability studies undertaken.
- These offer advantages over traditional energetic liquid based formulations with better thermal stability and lower toxicity.
- Low concentration (65 wt% HMX) formulation did not support detonation.
- Other formulations (70-75 wt%) successfully initiated IHE and have a critical diameter of ~ 3 mm.

Future Work

- Recent work has allowed the HMX loading to be increased ~ 77 wt% by further optimising the particle distribution.
- Option to incorporate cure chemistry into the binders is being investigated.

Acknowledgements

- P Jenkins
- L Webb
- S Miller
- S French
- S Wortley
- J Padfield